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Abstract 

It is possible to construct an integral which expresses 
the shape of diffraction spots exactly on the kinemati- 
cal model, provided that phonon coupling and absorption 
are negligible. The integral is a function of two distribu- 
tions describing quite generally the imperfections in the 
crystal and the beam. In the development, both the Ewald 
sphere and the diffraction plane are superseded by an in- 
finitely extended quartic surface in reciprocal space rem- 
iniscent of an open tulip flower. The finite dual surface 
which would allow the calculation to be performed en- 
tirely in direct space is also described briefly. The method 
of linearizing the integral is given so that it can be used 
in the development and verification of profile-analysis al- 
gorithms for use with area-detector diffractometers and 
cameras, whether they be of the functional expansion or 
of the histogramming type. It is shown that in Gaussian 
approximation a single second-rank quantity dominates 
the shapes of every spot in a diffraction pattern, determin- 
ing both the angular and spatial profiles simultaneously. 
This same approximation is the ideal zeroth-order expan- 
sion of a Weber-Hermite function profile analysis to be 
described in a later paper. 

1. Introduction 

This paper describes how to calculate analytically on 
the kinematical model of X-ray diffraction the three- 
dimensional shapes of diffraction spots from imperfect 
macroscopic crystals illuminated by imperfect beams, as 
measured with an area-detector diffractometer. It follows 
two previous ones on goniometry and on basic diffrac- 
tion geometry [Thomas (1990b), referred to hereafter as 
Goniometry; Thomas (1992), referred to hereafter as Ge- 
ometry]. These earlier papers reworked formal analytical 
and geometrical methods and addressed a range of calcu- 
lations sufficient to identify and record diffraction spots 
on an area-detector diffractometer. The more complicated 
geometrical calculation of peak profiles in all dimensions 

* This paper is a sequel to Modem Equations of Diffractometry. 
Goniometry [Acta Cryst. (1990), A46, 321-343] and Modem Equa- 
tions of Diffractometry. Diffraction Geometry [Acta Cryst. (1992), A48, 
134-158]. 

l~ Present address: European Molecular Biology Laboratory. 

is accomplished with the help of a quartic surface in wave- 
vector space. This permits the development of an exact 
integral describing the shape of a diffraction spot on the 
phonon-free kinematical model subject only to the ex- 
tra approximation of neglecting absorption. For reasons 
which will be explained later, this approximation is less 
contentious than it might seem. The total diffraction in- 
tegral appears to be intractable in its exact quartic form, 
but fortunately succumbs readily enough to linearization 
without material loss of accuracy. When the properties of 
the total diffraction integral are examined under Gaus- 
sian approximation to the controlling distributions, it is 
seen that the basic shape of every spot is controlled by 
a single second-rank quantity called Ill (shah). This re- 
sult has been demonstrated before for the angular diffrac- 
tion widths of a point-like crystal [when 111 appears in an 
incomplete tensor-like form (Thomas, 1982; Geometry)] 
and the result survives even when the crystal is not van- 
ishingly small. As shown here, the full form of the same 
quantity describes the cross section of the scattered beam 
within the same approximation. The symbols for this sec- 
tion are given in Table 1. 

The Gaussian results are the ideal zeroth-order expan- 
sion of a Hermite-function-based profile analysis which 
will be described in greater detail in a later paper. Pro- 
file analysis is destined to become increasingly important 
as ever greater demands are placed on inevitably imper- 
fect area detectors with their relatively broad point-spread 
functions (see Thomas, 1990a) and as ever larger bio- 
logical macromolecules are crystallized. The reason why 
profile analysis is supposed to be advantageous is that it 
downweights the tails of diffraction spots where the data 
are relatively more noisy. However, great care has to be 
exercised to ensure that the expectation spot shape is ac- 
curate, lest significant but undetectable systematic bias be 
introduced. Diamond (1969) also points out that one of the 
practical advantages is more basic: that determinations 
of peak intensities from profile analysis and from 'shoe- 
box' (the area-detector equivalent of 'background-peak- 
background') measurements can be compared, and a large 
difference is a good indication of an unreliable measure- 
ment. It is hoped that the geometrical analysis given here 
will be useful in establishing the extent to which current 
algorithms depending on assumptions of local similarity 
[e.g. the implementation of Kabsch (1988)] are trustwor- 
thy and in providing the basis for more global approaches 
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Table 1. Symbol table for § 1 

missing argument of a function 
the rotationally skew-symmetric operator defined in Goniometry 
rank 2 projective operator developed from the rotationally symmetric operator (Goniometry) 
rank 1 projective operator developed from the rotationally invariant operator (Goniometry) 
a quantity like a pointer or a signed axis, whose magnitude has no relevance (Goniometry) 
a rotation operator, and its inverse (Goniometry) 
the absolute value 
the Euclidean norm of a vector or covector 
operator having the same effect as a vector cross product, and its inverse (Geometry) 
vector in reciprocal space as left and right multiplicands 
vector in small-angle vector space as left and right multiplicands; generically .~ 
vector in direct space as left and right multiplicands 
(overline) a generalized matrix inverse (Moore, 1920, 1935; Penrose, 1955) 

a volume integral 

based on either Weber-Hermite  functional expansions or 
direct three-dimensional histogramming,  as is sometimes 
preferred. 

The contracted notation here follows the two previous 
papers closely and assumes an even greater importance, 
as will be seen, for example, in § 8 which would be intoler- 
ably expansive in full component  notation. Three spaces 
are used explicitly throughout. These are reciprocal space, 
direct space and small-angle vector space. In each case, a 
Dirac-like (cf Dirac, 1958) notation is used to denote vec- 
tors but the three types of  vector are distinguished by dif- 
feting brackets. Thus .) is used in reciprocal space, .} in 
direct space and .) in small-angle vector space. These are 
complemented by variously symmetric  rotational opera- 
tors such as • I', "/" and ._[. as expounded in Goniometry. 
A brief r6sum6 of  the geometry of  these operators is given 
in Fig. 1. 

A fourth space (of directions, characterized by -I ) is 
also used here, but for the most part appears only implic- 

itly. The vector cross product appears within the same 
consistent f ramework as a second-rank operator, [.J = 
"J" II" ]1. The consequent  unusual appearance of  some of  
the equations is, of  course, superficial and is offset by their 
greater power, compactness and (with practice) ease of  
use. The operators • I" and "l" are used in a more general 
way here than in Goniometry by al lowing the two occur- 
rences of  the argument to differ. 

This paper makes extensive use of  covectors as well as 
vectors. It is hoped that Figs. 2 and 3 will provide a suffi- 
cient summary of  the relevant geometrical  properties. All 
three figures for this Introduction are reproduced from the 
earlier papers, where a fuller explanation can be found. 

2.  B a s i c  d e f i n i t i o n s  

This paper is concerned mainly with a demonstrat ion of  
the major  effects generating the profiles in all dimen- 
sions of  diffraction spots measured on an area-detector 
diffractometer such as the Enraf -Nonius  FAST system (a 
television diffractometer with a solid-state detector), with 
an electronic camera using phospholuminescent  imaging 
plates (PIPs) or multiwire proportional counters (MW- 

Fig. 1. An indicator diagram for the rotational operators. This shows 
geometrically the invariant operator .1. which projects its vector ar- 
gument onto a line such as an axis of rotation, and the skew operators 
• j'. and "l" which project their vector arguments onto a plane such 
as an orbital plane as shown here with an attendant right rotation. 
The symmetric operator o.[. similarly projects onto the same plane, 
but with no attendant rotation, whilst the antisymmetric operator .T o 
projects with a rotation of half a turn. The identity operator, 1, marks 
the unaltered operand in its original position. 

Fig. 2. The action ofa covector upon a vector. Covectors are represented 
faithfully and naturally by a series of contour planes. Here, a covector 
acting on a vector is represented by a downhill contour intersecting 
the tail of the vector and by an uphill contour one unit higher marked 
with a broad arrowhead. The value of the product is the number of 
contour levels between the head and the tail of the vector, which is 

1 2 ~ in the case illustrated. It is characteristic of this representation that 
larger covectors have their contours closer together. Perhaps it takes 
some time to accommodate this appararent perversity, but it is quite 
sensible when it is realised that it is the density of contour lines that 
is proportional to the magnitude of the covector. 
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PCs). As such, the contribution from all inelastic scat- 
tering events including those which couple to phonons 
are ignored, following normal X-ray convention in all but 
the most fastidiously executed work. Phonon coupling is 
much more important in neutron diffraction and the ap- 
proximations made here would generally not be regarded 
as acceptable for that application. Absorption is also ne- 
glected here because it demands a much more compli- 
cated analytical treatment but is generally less important 
when working with neutrons which interact with matter 
even more weakly than do X-rays. However, the modem 
trend towards the use of Mo K& or shorter-wavelength 
synchrotron radiation instead of Cu Kc~, the increasing 
tendency to struggle with very small crystals and the occa- 
sional use of a filled capillary (Richmond, Finch, Rushton, 
Rhodes & Klug, 1984) all reduce the impact of differen- 
tial absorption on the spot profiles. It is assumed here that 
the characteristically broad tails under spots caused by 
phonon coupling (i.e. thermal diffuse scattering, or TDS) 
and the effects of absorption can both be accommodated 
adequately by the full profile analysis to follow in a later 
paper. The symbols for this section are given in Table 2. 

Kinematical diffraction geometry in the absence of 
phonon coupling is dominated by equations of conserva- 
tion of momentum, S) = R) -T} [Goniometry, (11.1); Ge- 
ometry, (3.1)], and of energy, (SS} = (TT} [Goniometry, 
(11.2); Geometry, (3.2)]. First eliminating the scattered 
beam, T}, and then making a couple of minor rearrange- 
ments reduces these to the equalities 

(RR} = 2(RS) = 2(RT} = 4(SRIRT}, (2.1) 

s) 

Fig. 3. Basic diffraction geometry as covectors or as vectors. The covec- 
tor diagram on the left displays most clearly the balance of periodici- 
ties between (S, (T and (R in direct space. The 'direction' or 'sign' of 
each covector is marked by the positioning of its label, which occu- 
pies the more positive side of an arbitrary contour (this is somewhat 
simpler than the method used by Burke, 1985). The equivalent conju- 
gate diagram (on the right) using vectors in reciprocal space is much 
more familiar. The vector, S}, is defined to point in the direction from 
the crystal to the source, and thus in the opposite direction to the mo- 
tion of the photons. This choice is justified on several grounds: it is 
convenient to use the nominal crystal position as the origin for all 
quantities in direct space; the equations, fortuitously, have fewer mi- 
nus signs; perhaps more importantly, there is a direct analogy with 
the analytical quantum-mechanical formula for the scattering event, 
where the incoming photon being destroyed and the newly created 
outgoing photon appear in mutually conjugated forms. 

which are used frequently to simplify other results. As is 
very well known, when S} is held fixed, the solution for R) 
of the first equation [referred to simply as 'the diffraction 
condition': cf. Goniometry, (11.3); Geometry, (3.3)] is a 
sphere centred on S} named after Ewald (1913). Fixing R} 
gives the equally well known diffraction plane on which 
S} bisects R}; though this is more commonly used in the 
study of neutron diffraction. 

Neither of these familiar surfaces is particularly help- 
ful for profile analysis on an area detector, however, when 
it is much more pertinent not to fix R), S} or even T}. 
but rather the detected position of the 'scattered' photon.f 
This can be denoted by the two-dimensional vector Q or 
its three-dimensional extension Q* (Thomas, 1989), both 
of which (by definition) lie within the assumed detection 
plane (Thomas, 1989); thus, even the three-dimensional 
Q* can span only a two-dimensional subspace. To al- 
low the discussion of small changes not necessarily con- 
strained to lie in this subspace, an equivalent vector, O}, 
is used here. Q* and O} are both tied to the crystal and are 
always parallel. The name O is chosen to draw attention to 
the relationship that this vector along the scattered beam 
bears to the Bragg angle (Bragg, 1913), 0, which finds 
no direct application in the theory of area diffractometry 
(Geometry). This is fortunate because some representa- 
tion of the position on the detector must be an argument 
in the equations for beam cross section; the conveniently 
compact symbol ~9} can then be used without any risk of 
confusion to denote a small (but not generally infinites- 
imal) shift in any direction away from the central posi- 
tion of the diffracted beam, O}, which would otherwise 
be written 60}. 

It will turn out that terms of the type T} (R/(RT} occur 
quite frequently and it is helpful to contract them in a nat- 
ural extension of the notation for the rotationally invariant 
operator -I o , using the definition 

T}(R 
TIR- (RT}" (2.2) 

This is clearly consistent with the definition of the previ- 
ously symmetric • I" when the two arguments (T) and (R) 
are the same. The same property of being independent of 
the magnitude of the arguments is preserved and the new 
operator is also considered to be a rank-one quantity. It 
nulls any vector on the right which is contained within 
the zero contour of (R, which is equivalent in Cartesian- 

t Kabsch (1988) has nonetheless developed a practical method of 
profile analysis based on the idea of mapping the perceived shapes of 
the spots back onto local regions of the Ewald sphere. In this regard, 
Kabsch follows Diamond (1969) who also preferred a numerical his- 
togramming approach for the linear diffractometer (Amdt & Phillips, 
1961) based on a (clearly justifiable) assumption of locally similar ge- 
ometry. Both of these implementations are renowned for their reliabil- 
ity. This paper addresses the different question of trying to relate the 
perceived shapes directly to the fundamental controlling distributions 
describing the beam and the crystal. The contribution from the detector 
is deferred to the next paper, but can to some extent be anticipated from 
the discussion in Thomas (1990a). 
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Table 2. Symbol table for § 2 

the multiplicative identity, representable as a unit matrix 
factor relating direct-space and reciprocal-space representations of a scattered beam 
a short vector in direct space, referred to the crystal 
the Bragg angle 
the oriented conventional reciprocal-space unit cell 
Miller indices, (h,k,~) 
any vector pointing in the same direction as O} or T) 
a mosaic misorientation angle 
small-angle vector representing rotation through a mosaic misorientation angle 
a mosaic misorientation axis 
operator effecting rotation through a mosaic misorientation angle, and its inverse 
a short vector in direct space, referred to the laboratory 
the (Arndt-Wonacott) diffraction angle (Amdt & Wonacott, 1977) 
a signed representation of the axis of total rotation from datum 
rotation through ¢,  and its inverse 
a very small perturbation in the diffraction angle (about ~)  
a small-angle vector denoting a small rotational perturbation away from the diffracting position 
a signed representation of the instantaneous axis of rotation (i.e. axis of angular velocity) 
rotation through ¢ about 
a point on the detector faceplate as a 2-vector; also Q* as a 3-vector 
the scattered beam in direct space; O} ]l Q* 
a small variation in O} 
a Bragg plane in the diffracting position 
a reversed incident-beam wave vector 
the scattered-beam wave vector 
a Bragg plane, referred to the crystal frame 

Euclidean space to saying any vector perpendicular to R). 
Similarly, it nulls any covector multiplying on the left 
whose zero contour contains T). A similar argument about 
perpendicularity holds in Cartesian-Euclidean space. 

The Miller indices, h, and hence the magnitude (i.e. 
length) of the reciprocal-lattice vector, R), must be known 
from the outset since R) is given by 

R) = ~ M X ) ,  (2.3) 

extending equation (11.4) in Goniometry to allow for the 

possibility of crystal mosaicity. The operator ~ describes 
the total rotation of the crystal through an angle ¢ about 
the axis ff from its datum position to the nominal central 
diffraction position of the spot being considered: 

~t = ~ l *  + qff~ sin ¢ + ~1~ cos ¢. (2.4) 

Derivations of ¢ in this notation can be found in Goniom- 
etry and in Geometry, though both are derivative exposi- 
tions based on Wonacott (1977). The rotation operator 1VI 
effects the mosaic-block rotation specified by the small- 
angle vector/~ following the same method as is given in 
§9 of Goniometry: 

M = M[M+MJMsinp+MJ_Mcos . ;  . = []/~11; lxTI = /). 
# 

(2.5) 

The expectation value of 1~1 is 1, based on an assumption 

that the unit-cell matrix, F, defined below will be refined 
correctly at all times. All of the Jacobian derivatives nee- 
essary to do this have already been given in the two pre- 

vious papers. ~ is also a rotation operator specified from 
a small-angle vector and (following the usage in Geom- 
etry) describes a deliberate missetting of the crystal away 
from the central diffraction position, again expressed con- 
veniently as a function of a small-angle vector ¢: 

4 = ¢1¢ + ¢I¢ sin ¢ + ¢&¢ cos ¢; ¢ = I1¢11; ¢ - ~ - - .  

¢ 

(2.6) 

At the central diffraction position ~ = 1 = ~ ,  which 
much simplifies many of the equations given later. The 
reciprocal-space vector X) also follows the definition 
given earlier [Geometry, (3.11)] in the transposed form: 

(X = (t lF = (h,k,g) (k~ , (2.7) 

which was written this way only because F is defined as 
the inverse of the matrix representing the conventional 
direct-space unit cell, F, so that F has its component triplet 
of vectors in the rows rather than in the columns, as in F. 
The equivalent well known UB matrix of Busing & Levy 
(1967) is transposed relative to the usage here. Apart from 



450 M O D E R N  EQUATIONS OF DIFFRACTOMETRY 

specifying what is meant by X), the Miller indices, h, are 
not otherwise needed in this paper. 

Vectors in direct space tied to the crystal are also 
needed in a form referred to the laboratory frame. A small 
displacement from the nominal crystal centroid is used 
frequently and the two forms are related by 

p} = @@b}; (2.8) 

b} is tied to the crystal and p} to the laboratory. The 
operator actually has very little effect here since ¢ and b} 
are both small (say of order 6) by definition. 

3. The diffraction tulip 
To calculate the total diffracted intensity at a given point 
on the detector, it will be necessary to integrate over 
all positions within the crystal and over all mosaic an- 
gles, leaving S) as the only unknown quantity.* The so- 
lution sought for S) represents the incident photons that 
could strike the given position on the detector by be- 
ing diffracted from the periodicity (reciprocal-lattice vec- 
tor) X). To find S), it is necessary to demand that the 
reciprocal-space representation of the scattered beam, T), 
be parallel to the direct-space representation of the scat- 
tered beam emanating from a position p} within the crys- 
tal and landing at O} + 0} on the detector: 

T) = ! (e }  + - p}) _= l e + O - p } / o , .  (3.1) 

Here, a has the dimensions of area (usually with mixed 
units) and is the same symbol as in the previous simpli- 
fied equation (5.1) of Geometry. Typically, the unit cell is 
measured in Lngstrom units, A, and the diffractometer in 
mm, so the mixed units of a are then/~ mm. The thin ver- 
tical line here delimits the sum of vectors in direct space 
rather than indicating a direction. Substituting the equa- 
tion into the equation of momentum balance gives 

S) = R} - l e + o - p } / o , ,  (3.2) 

which can be premultiplied by (R and simplified using the 
equation of the diffraction condition (2.1) to give 

1 = (RR) (3.3) 
a 2 (R IO+0-p}" 

* The baldness of this sentence, which affects the entire development 
of  this paper, is somewhat disingenuous. The author was led to the con- 
clnsion expressed by writing the shape of a diffraction spot as a total 
integral over all quantities, R), S), T),/~ and b} or p}. The integral was 
set up with Dime 6 functions to constrain the integrand to obey all of the 
relevant equalities, and the author was then unable to find any workable 
reduction except for the one used here. In a way this is rather satisfac- 
tory, because the workable set of variables also seems to be the most 
natural one. 

Substituting this value back into (3.2) gives the required 
result: 

S) = R ) _  IO+~-p}(RR) 
2(R le+0-p} 

[ O + t g - ~ b }  (XX) (3.4) 
= - , . . . . .  

2<XM~@IO+0-@~b } 

in which the substitutions (2.3) and (2.8) have been used. 
The six rotation matrices that would be between (X and 
X) cancel to the identity. The magnitude of the solution 
for S) is clearly directly proportional to IIRll  - I IXl l ,  but 
depends only on the direction of ]O+O-p}. For this rea- 
son, [O+~9-p} could be replaced with impunity in (3.4) 
by T), or indeed any other vector H) of non-vanishing 
magnitude pointing in the same direction. Making this lat- 
ter substitution, multiplying out the denominator and then 
rearranging shows that 

[ S ) 2 ( H -  R)2(H + H)(R] R) = 0). (3.5) 

This can be squared, resulting in an equation quadratic in 
S) and quartic in R) whose solution for S) is a doubly 
branched infinitely long test-tube-shaped surface axially 
symmetric about H). The region near the origin has the 
greater practical importance (corresponding to moderate 
and large Bragg angles) and has a shape reminiscent of an 
open tulip flower, after which the surface is named. See 
Fig. 4. 

The curvature of the tulip is highest at its tip, whose 
sphericity and radius of llR 11/2 are both characteristic of 
back scattering. Its infinitely extended cylindrical end has 
a radius of curvature asymptotically equal to [IR[[, which 
features are characteristic of small-angle scattering. 

If the reciprocal-lattice vector and the scattered-beam 
vector rotate in step, the tulip, the diffraction plane and 
the Ewald sphere just co-rotate. If the two vectors rotate 
relative to each other, the Ewald sphere changes size as 
well because the solution for S) changes magnitude. 

The shape of the tulip is calculated most easily in the 
form of a parameterized curve representing a central two- 
dimensional section as shown in Fig. 5 in which (H = 
[0,1,0], (R = [r sin tg,r cos ~9,0] and 0 is the complement 
of the Bragg angle, 0. Then the parametric form 

(S = [x,y,0] 

sec 2 t9 
= [r s i n O , r ~ / ( - - ~ -  - s i n  2 0),0] (3.6) 

follows directly from the figure. The outer rectangle 
in Fig. 5 has width ~/r 2 - z  2 = r cos0 and height 

X/z2 + y2 sin 20 = r sin 0, so its area can be expressed 
as  

X/z2 + y2 sin2Ox/r 2 _ z2 = rsinO rcosO 
r 2 

- sin 20. (3.7) 
2 
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Cance l l ing  s in  2v9 and  squar ing  g ives  the non-paramet r ic  
equa t ion  to w h i c h  (3.6) is a solut ion:  

(x 2 + y 2 ) ( r 2 - 2 : 2  ) -  r 4 
4 " (3.8) 

The  u n n e e d e d  second  b ranch  induced  by  squar ing  corre- 
sponds  to Bragg  angles  w h o s e  magn i tude  exceeds  90° ;  
this  jus t  m e a n s  that  H) points  in the wrong  direct ion.  

J 

Fig. 4. The diffraction tulip. This figure displays diffraction geometry 
in direct space and in reciprocal space simultaneously. The origin of 
direct space, being the nominal crystal position and rotational centre 
of the goniostat, is marked with a small circle. The origin of recipro- 
cal space, coinciding with the direct-space volume element at p), is 
marked with a square. The bold curve is a section of the diffraction 
tulip introduced in this paper, a surface axially symmetric about T) 
defining the locus of all incident-beam reversed wave vectors which 
could be diffracted by X) at some orientation of the crystal and then 
land at Q*. The fine line to the fight denotes the assumed plane of 
detection of the X-rays. S) is the specific solution when X / is rotated 
into the position R) and an appropriate elementary Ewald sphere is 
shown very lightly. The diffraction plane which bisects R) is also 
shown lightly. If the diagram were treated as a calculating device, 
it would operate as follows: define the position of interest, Q*, on 
the detector and the position p} of a small part of the crystal; the line 
between these defines H) which is also the axis of the tulip; decide 
which diffraction spot is to be studied and evaluate [[X[[ for it, which 
sets the size of the tulip; then any point on the surface of the tulip rep- 
resents an incident reversed wave vector which could be diffracted 
onto Q'~ by X); it will do so when the crystal is so oriented that X) is 
R) = S) + T). 

~ 1  r s i n 0 _  

V / ~ _  ~g2 

Fig. 5. A central section of the tulip. This shows the parameterized ge- 
ometry of a central section of the diffraction tulip. ~ is the comple- 
ment of the Bragg angle O. The scattered beam T / is horizontal, along 
the y axis, and x is used as a typical radius vector. The origin to which 
R / and S) are tied is at the lower right comer. 

4. The equivalent direct-space representation 
of  diffraction 

A l t h o u g h  it is usua l  to d iscuss  d i f f rac t ion geome t ry  wi th  
the help  o f  cons t ruc t ions  in  rec iprocal  space,  it mus t  be  
poss ib le  to ach ieve  the s ame  resul ts  ent i re ly  in direct  
space.  The  mos t  natural  w a y  is by  the use o f  a cam- l ike  
device  w h o s e  surface  has  the proper ty  o f  de te rmin ing  the 
pos i t ion  o f  a wave  crest  one  w a v e l e n g t h  a w a y  f rom the 
or ig in  o f  the figure, as s h o w n  in bo ld  l ines  in Fig.  6. 
The  ca lcu la t ions  o f  this  sec t ion  are not  used  later, and 
for  s impl ic i ty  are g iven  in a two-d imens iona l  paramet r ic  
form,  so rows  represent  covectors  and  c o l u m n s  represen t  
vectors .  Eve ry th ing  scales  together  i f  all o f  the w o r k i n g  
is in the same  space,  so the procedure  is to define the 
p lane  o f  the dif f ractable  inc ident  wave  by  the uni t  co- 
vector  [cos 20, s in  20] where  0 is the  paramet r ic  Bragg  an- 
glc. Wi th  the a s sumpt ion  that  any  poin t  on  the surface o f  
the cam m a y  be ca l led  [x ,y]  T, the  d is tance  b e t w e e n  this  
point  and  the wavef ron t  in tersec t ing  the or ig in  mus t  be 
the w a v e l e n g t h  sought ,  A, w h i c h  is a lso de te rmined  by  
B r a g g ' s  law: 

 cos , 

= ~ f ( z , y , O )  = x c o s 2 0  + y s i n 2 0  - 2 d s i n O  = 0. (4.1) 

The  rea r rangement  o f  the equa t ion  into the fo rm of  an im- 
pl ici t  (i.e. constant)  func t ion  m e a n s  that  a requi red  extra  

R 

Fig. 6. The diffraction cam. This diagram is in direct space except for 
the lightly drawn Ewald sphere, scattering vector R) and solution for 
the reversed source wave vector, S), which are not needed in the con- 
struction. The covectors representing the periodicities of the Bragg 
planes and of the incident and re-radiated beams are magnified enor- 
mously relative to the vectorial depiction of the same beams and of 
the assumed plane of detection. The reciprocal-space construction is 
scaled so that the apparent length of R) equals the separation of the 
Bragg planes. Its operation as a calculating device follows that for the 
tulip very closely. The position of the detected photon, Q*, a position 
within the crystal, p), and the magnitude of a reciprocal-lattice vector, 
IlXll -- IIRII, define the cam and then any plane tangential to it is the 
position of the last wave crest of a scatterable incoming wave before 
the one which contains the origin (i.e. the + 1 contour of the covector 
(S which points into the source). The scattered beam is represented by 
the first wave crest after the one containing the origin (i.e. the + I con- 
tour of the covector (T). The unnecessary zeroth contours of IS and 
of (T are not shown. The Bragg planes are represented by contours 0 
and +2. The missing contours tend to confuse the diagram. 
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e 
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I 

ILl 
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p 
Q2(3)  

s) 
(u 
6V 

E 

T 
ILI 

Table 3. Symbol table for § 5 

the halving operator, reprb.sentable as half a unit matrix; extendable to any other fraction 
the speed of light 
the electronic charge 
a structure factor 
the predicted intensity profile of a diffraction spot 
the conventional Lorentz factor 
the mass of an electron 
the conventional polarization factor 
the vector space spanned by Q, which includes the detection plane 
a small variation in S) 
the normal to the surface of the diffraction tulip 
a small volume element 
the wavelength of the radiation, usually X-rays 
the beam wave-vector distribution 
the mosaicity distribution within the crystal, as a function of mosaic misorientation angle 
the antisymmetric form (S6/,_[~R) = (R~].~S) = -(R6/,]69S) = - (S~[69R) = L -~ 
(shah) a second-rank (bi-covector-like) tensor form describing angular diffraction widths 

equation can be created by setting the differential df = 0 
as well: 

0 = df = [ - 2 x  sin 20 + 2 v cos 20 - 2d cos 0] d0 

+ cos 20 dz + sin 20 dy. (4.2) 

The lower line can, and indeed should, be set to zero in- 
dependently: 

5. The contribution to the scattered intensity 
from a small part of the crystal 

The symbols for this section are given in Table 3. It is nec- 
essary to be able to describe first the scattering from a very 
tiny part of a crystal before tackling the more complex cal- 
culations relating to the whole crystal. Lipson (1972) says 
that the intensity diffracted from a small part of a crystal 
is equal to 

cos20 dx + sin20 dy = 0, (4.3) 

since it demands that the sought wavefront be tangential 
to the cam (see Fig. 6). Thus, (4.2) reduces to 

- z  sin 20 + y cos 20 = d cos 0, (4.4) 

which combines with (4.1) to give 

[ cos 0 [;]: 
- sin 20 cos 20 L d cos 0 (4.5) 

whose solution is 

[;]: [cos 0 
sin 20 cos 20 ] L d cos 0 ] (4.6) 

This curve has a characteristic shape rather like the aerial 
surface of a droplet sitting on a surface. Unlike the tulip, 
whose open end extends to infinity to meet the second 
branch, the drop-shaped surface is closed on a perfectly 
formed rim within a plane containing the origin of Fig. 4. 
These contrasting properties are not accidental: the tulip 
is constructed entirely with vector geometry in recipro- 
cal space, whilst the cam is the same construction made 
entirely with the dual covector geometry in direct space; 
therefore, the two surfaces must be duals. 

1 (Ne2[._FI)2A3 1 + cos2 20 

sin20 \ me 2 2 
~ r  

ILl P 

6v, (5.1) 

though the provenance of this expression is not given. It 
is concerned mainly with terms controlling the integrated 
intensity of a diffraction spot and contains little which ma- 
terially affects the shape. The Lorentz factor cannot in any 
case be used without careful consideration when 0 is very 
small, but values of 0 small enough to cause problems 
are of little interest in conventional area diffractometry. 
The entire content of the expression above is ignored in 
the equations developed below, which are concerned only 
with the shapes of the spots. 

A tiny crystallite or mosaic block can be described 
as containing points within the range of (direct-space) 
positions denoted by the volume element dab} at b}. It 
is also helpful to specify mosaic misorientations lying 
within a restricted volume element in small-angle vector 
space written as, say, da#) at #). Though the notation im- 
plies already that the volume elements are infinitesimal, 
strictly, each direct-space volume element is actually held 
to be sufficiently large that it is meaningful to use a kine- 
matic description of its X-ray-optical properties, whilst 
nonetheless also being sufficiently small that no effects 
of internal curvature are important, either in the crystal or 
in the X-ray wavefront. 
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Whilst the sensitive surface of an area detector de- 
scribes a two-dimensional space Q2 in which a diffrac- 
tion spot takes its shape (Thomas, 1989), a third dimen- 
sion is spanned by some crystal rotation angle. This angle 
may be about any axis, and it is convenient to use a small- 
angle vector to express it as a deviation from the central 
diffraction position. Thus, the density of the total relative 
intensity of diffraction is expressed relative to a volume 
element d20} d~b). For gas-chamber detectors which are 
not always represented adequately by an equivalent (thin) 
assumed plane of detection, there is no objection against 
using da0} instead of d 20}, though the extra complica- 
tions of having to deal with an attenuating beam are not 
dealt with here. 

The small contribution to the total scattering from this 
elementary volume attributable to a Bragg peak with 
reciprocal-lattice vector X) when the crystal is oriented 

a small angle ~b about an arbitrary axis q5 away from its 
central diffraction angle, ~, about if, and landing a small 
distance, v~}, away from the central position, O}, on the 
detector faceplate must be describable (on an assumption 
of ideal imperfection so that intensities integrate linearly) 
by 

perturbation in this result since the determinant of the 
Jacobian relating them [a pure rotation through 6 ,  see 
(7.11)] is unity. The determinants of the Jacobians relating 
S) to/z) and b} are not so simple, however [cf (7.8) and 
(7.12)], but, given that the entire discussion here is rather 
cavalier about absolute scaling, it will suffice merely to 
state that formally these determinants might otherwise 
have to be taken into account. The other distribution func- 
tion, E, describes the relative scattering power of each 
part of the crystal at each possible mosaic orientation, 
also in a completely general way. As for E, -- should be 
zero when b} describes a point outside the crystal, which 
means that -'= actually has to include the description of the 
crystal shape, and can even have this term as a separable 
factor if the crystal is uniform enough. It should also be 
the case that -Z is vanishingly small in regions of rotational 
space in which a small-angle vector ceases to be an ade- 
quate representation. This is not limiting in practice. To 
preserve absolute scaling, it would normally be assumed 
that 

fffda~)ff/dab) E ( b } )  = 1. (5.4) 

d ( 2 + l + a + 3 ) I = E ( ~ l )  E ( ~ I ) d 2 v ~ } d ¢ ) d a b } d 3 # )  

(R) - ,®+,~-p) (RR)  ) 
tied to laboratory frame ~ = E p} 2(R I®+,~-p} d2tg} dq~) 

( # ) )  dab} da/z) tied to crystal frame ~ x E b} 

\ ~ b }  

x -  b} 

in which (3.4) has been used to refer the terms to be inte- 
grated to the crystal frame. The notation for the differen- 
tial, d(2+ 1 +3+3)1, is entirely equivalent to the more usual 
d 9 I, but makes clearer on the left-hand side the separately 
integrable parts on the right. The reason that integration 
over nine variables suffices when both E and -- have six 
arguments is that they share three because of the tight cou- 
pling between p} and b}. 

The distribution function E describes completely gen- 
erally the beam wave-vector distribution at all positions in 
direct space. In principle, it must be defined everywhere, 
or certainly everywhere inside the limits of integration, 
though it will clearly be zero well outside the main beam. 
It should satisfy 

s) 
fffd3S)fffdap} E ( p } ) =  1, else total beam intensity. 

(5.3) 

Integrating over b} rather than over p} causes no direct 

(5.2) 

Both E and E must be nowhere negative. The arrange- 
ment of the arguments of E and -- one above the other has 
no significance and is chosen only to facilitate the printing 
of the equations within the narrow columns of the journal. 
It does, however, fortuitously match the arrangement of 
vector terms in § 8. 

6. The total diffraction integral 

Integration of (5.2) over all positions b} and mosaic rota- 
tions fi gives the total diffraction integral, which is the ex- 
act description of spot profile generation on the phonon- 
free kinematic model in the absence of absorption: 

"b"XX' / 
l~lX)- 2 { X ~ , ~ l ~ t o + e - O 4 b }  . x E OOb} 

(6.1) 
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This integral displays no obviously pathological proper- 
ties, but appears intractable unless constraints are placed 
on E and -'=. By demanding that the beam be reasonably 
fine, the crystal not too large and the mosaic properties not 
unusual, it is then possible to offset the origin of the first 
(upper) argument to E and to linearize it. This lineariza- 
tion corresponds to the approximation of the diffraction 
tulip by its tangent plane at the centroid of the reversed 
incident-beam wave-vector distribution, which is just the 
mean value of S), say S o), assumed in the previous pa- 
pers. 

The plane tangential to the tulip can be shown (see Ap- 
pendix B) to be representable by the covector: 

(U = (R + (RSIS, (6.2) 

which is so scaled that it satisfies (US)  = (RR).  The ge- 
ometry of (6.2) is shown vectorially in Fig. 7. 

7. D e r i v a t i v e s  o f  S)  

The derivatives of S) with respect to ¢), ~}, b} and/z) are 
all necessary for its linearization. All of these arguments 
are small by assumption, so it is not necessary to retain 
product terms.* Instead, it is quite appropriate simply to 
specify that the derivatives are evaluated at the nominal 
central diffraction position, when ¢) ~ 0), ~9} ~ 0}, b} 

0} and #) ~ 0). The first of these forces @ ~ 1, which 
hence disappears from the equations. 

* The neglect of quadratic and higher terms here does not imply that the 
analysis of the diffractive properties of focused beams or curved crys- 
tals has been excluded; on the contrary, these effects are modelled by 
the completely general distributions ~ and 2. Experiments in which 
the crystal is absurdly large compared with the diffractometer are, how- 
ever, excluded by this approximation, as are those in which the mosaic- 
ity exceeds all reasonable bounds (i.e. several degrees). Thus nothing of 
practical importance is lost. 

Fig. 7. The normal to the tulip. This diagram is in reciprocal space alone 
and uses only vector (i.e. no covector) constructions. It shows the nor- 
mal U) to the tulip at S) which is just the reciprocal-lattice vector R) 
plus its right projection onto S), given by SISR). In order to present the 
normal at the point to which it applies (the centre of an Ewald sphere), 
R) has been translated through -T) from its more usual position in 
the diagram. The X-rays enter from the right. 

A sum of two terms recurs frequently in this section 
and is contracted conveniently as 

T)(R]  (7.1) 
TJ.R = 1 - TIR = 1 - (RT)J 

using an asymmetric extension of the notation of the 
symmetry-based rotation operators (Gonioraetry). This  
operator has notably skew properties, T) as a null right 
eigenvector and (R as a null left eigencovector: 

TJRT) = 0), (7.2) 

(RTJ.R = (0. (7.3) 

The eigensystem of the operator is discussed in Appen- 
dix C. 

The derivative of S) with the simplest interpretation is 
that with respect to R). It is obtained directly from (3.4), 
but simplifies using (2.1): 

0s) 
VB) S) - OR) - 1 - HIR + HIR½RIH 

- 1 - TIR + T]R½ RIT 

= 1 -  TIR½RIS. (7.4) 

This derivative is also notable for the skew that it induces; 
for example, 

[ 1 -  TIR½RIS]R ) = S), (7.5) 

which is not surprising since S) is linearly proportional to 
R), whilst by symmetry 

( R [ 1 -  TIR~RI s] = (T. (7.6) 

The derivative has no effect (i.e. acts like the identity) on 
any fight multiplicand (i.e. vector) whose inner product 
with (S vanishes and by symmetry on any left multipli- 
cand (i. e. covector) whose action would annul T). 

The derivative of R) itself with respect to mosaic mis- 
orientations is obtained from (2.3) using techniques de- 
veloped in Goniometry: 

OR) • 
V.)R) - 0#) - @Vu)[/~JX) = @Vu)LX]#) 

= ~,LXl = @LXl~,~ , = LRI@. (7.7) 

This means that the derivative of S) with respect to mosaic 
misorientation can now be calculated as 

0S) 0S) OR) 
V , ) S ) -  - -  = OR) OIL) O#) VR} S)V,)R) - 

= [1 - TIR~ RIS] JR] 
= [JR] + TIR[~] ~ (7.8) 

using the chain rule of the differential calculus and the 
diffraction condition (2.1) for the final reduction. 

The derivative of S) with respect to the detector posi- 
tion, O}, is asymmetric and dimensioned as inverse area. 
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It simplifies using (3.3) and (7.1): 

cOS) _ O} (RR) (R  (RR) 1 
%} S) = %} S) - cOO} (Re} 2 (Re} 2 (Re} 

_ 1 [H)(__R 1]- T]_R 

(7.9) 

The derivative with respect to changes in position p} 
within the crystal is trivially equal but opposite since tg} 
and p} always appear pairwise with opposing signs: 

0S) _ T].R (7.10) 
Vp) S) -=- Op} o~ 

This gives the derivative with respect to b} immediately 
by application of 

0p} _ ~ (7.11) 
XTb} p } -  Ob} 

[cf. (2.8)1 and the chain rule 

S/-- V  S/Vu pt --alR 
Ot 

(7.12) 

One possible route to the remaining V~) S) would be to use 

Vo)p} = ~] and V~)R) = L R] so that Vo)S) = Vrt) S)Vo)R) + 

Vp} S) V~) p} -- [ 1 - TIR ½ RIS ] LR1 + @ "I1R LPl = L R] + TIR[S] + 
_1 T].R LPl- When this derivative is calculated at the cen- 
t~oid of the crystal, the latter direct-space term vanishes 
because then p} = 0} by definition. The contribution from 
this term is, in any case, very small (of order 6 2 , say), 
since both p} and ~b) are assumed to be small (of order 6). 
A more direct route would have been to use instead the 
equivalence: 

O/t) _ ~ (7.13) 
v~#) - o,~) 

which is just the rotational operator relating the crystal 
and laboratory frames, so that 

V~)S) = 7u~)S)V~)#) = [IN] + TIR[SI]~ ~ 

= [R] + TIR N (7.14) 

directly from (7.8). 

profile analysis using Weber-Hermite functions. Both/~ 
and b} are naturally referred to a null vector as origin, so 
a Gaussian representation of the crystal in both mosaic 
small-angle space and in direct space is just 

" - ( ~ I  ) , -~  exp{ -  ½~M#)} 

1 x e x p { -  ~{bVb} }, (8.1) 

making a frequently implicit assumption that the two dis- 
tributions are uncorrelated. This definition does not sat- 
isfy (5.3) and (5.4).* 

The X-ray beam can be represented in a similar way in 
direct space as the Gaussian: 

1 E(p}) "~ exp{-g{pl~p} } 

= e x p { -  1 { b ~ t ~ b }  }, (8.2) 

though it should be remembered that, to be a reasonable 
representation, P will have an eigenvector along the beam 
direction with an exceedingly small eigenvalue. In princi- 
ple, a rough correction for direct-beam absorption could 
be made by offsetting the centre about one standard de- 
viation towards the source, but this is not done here. The 
overlap between the direct-space crystal and beam dis- 
tributions must be narrower than either, so the two must 
combine to form 

exp{ - ½ { b [ V + ~ ] b }  }. (8.3) 

Again with an assumption of no correlation, the beam 
wave-vector distribution can be represented by 

1 (sSs)}, (8.4) E(s))  ,~ e x p { - g  

where 

r0s) 0s)- s/-- 

- 6 s ) ,  

b } - i 0 } ]  

(8.5) 

which is referred not to the origin of wave-vector space 
but rather to the mean beam wave vector, say S 0). Com- 
bining these highly simplified distributions, contracted a 
little using matrix notation, and substituting into the total 

8. Examination of the total diffraction integral 
in Gaussian approximation 

The practical evaluation of the total diffraction integral 
for the purpose of profile analysis is the subject of a later 
paper, but it is already useful to examine its behaviour 
under Gaussian approximation to the controlling distri- 
butions. This corresponds to the zeroth-order term in a 

* It is possible to use a factor 7r rather than 1//2 under the exponential. 
This would have the desirable effect in the present context of eliminating 
the scaling factors of (270 3 from the results, and it would also require 
the simpler definition of the Fourier transform lacking the factors of 27r. 
There is, however, an undesirable side effect of complicating the nor- 
mally factor-free equations for variance-covariance. In the full profile 
analysis using Weber-Hermite functions, the factor of 7r may, however, 
be the preferred one because of the importance of maintaining the unit 
normalization. 
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diffraction integral (6.1) gives 

where 

and 

d(2+l)I ~ffdab} ~ffda/t) exp ( ~ ' [~I] d20}d¢) ~ _1 [(~ {b]Y" 

1 [ (u+(¢¢,  {b-{0¢] l? [/.x)+i¢) ] } 
2 [b I - io IJ  

(8.6) 

.T = ~0M v+Op~t] (8.7) 

[O(SlOOq g[os) 0s) 
v = t0<s/0 bJ 

(8.8) 

are tied to the rotating crystal. Tucking the volume ele- 
ment d 20} de) under the left-hand side has no formal sig- 
nificance but does save space. The value of the integral is 
obtained by completing the squares on #) and on b} to get 

d(2+1)1 

d20} de) 

,-, exp{--} [ ( ¢ ~ , -  {v~¢] [ Y - Y ~ l ; ]  [ I.-¢o}J } i¢)1 

x fffd3b}fffda/z) e x p ( -  1[~, {b] [.F+I;] [~I] } 

- (2'n')3 exp{ :1.[(¢¢,-{.O'l l i l ] 
,/I..r+Vl -5 l-IO}.1 .j 

(8.9) 

The apparently unlikely simplification of the embedded 
matrix, 1;-);(f'+~;)V, to the intuitively expected sym- 
metric form, .T'+I;, is explained by classical methods in 
Appendix A. By rearrangement of the positioning of the 
rotation matrices, (8.9) can be expressed more directly in 
terms of the detector positions ~9} and ¢): 

d(2+1)I 

d20) de) 

where 

x/IC-+V[(2703 exp{-71 [(¢, {0] [ ~ - ~ ]  [;I] } 

(8.10) 

C V i +  ' (8.11) 

which is of full rank 6, and 

[oIs/o@] g [os /os ) ]  
w = LO<S/O{oj o¢) ~ j '  (8.12) 

which, though 6 x 6, is only of rank 3. ~ and }4; corre- 
spond to .T" and 12 except in being tied to the laboratory 
frame. The 6 x 6 matrix which forms the kernel of (8.10) 

must therefore also be of full rank 6. This raises a conun- 
drum, since the measured profiles of diffraction spots on 
area detectors are only three dimensional. The extra three 
dimensions arose because of the generality of the vectors 
0} and ¢). Both are expressed quite correctly in three- 
dimensional spaces, though only a two-dimensional vari- 
ation of the former and a one-dimensional variation of the 
latter will be used. This suggests that a simpler and com- 
putationally more efficient representation of (8.10) may 
exist. In principle, it can be created by exploiting the gen- 
eralized inverses of the 3 x 6 and 6 x 3 Jacobians (Moore, 
1920, 1935; Penrose, 1955), so that the equation assumes 
a form containing the required inverse of a 3 x 3 matrix 
of full rank: 

= L0(S/O{Ol oo} ~ L0(s/0{oj 

as) as) 
x 0¢) Oo} 

r0<s/0, l  [os> os/] 
= [0(S/0{tg] [ ~  ~ j ,  (8.13) 

though this result is secure only on the condition that 0} 
does, indeed, span two dimensions and ¢) one. The 3 x 3 
matrix, HI, inverted at the kernel of this equation is itself 
just a sum of 3 x 3 matrices, since ~, like ~, is block 
diagonal. Expanded, it reads 

0s),  , 0(s LU = s + 5 ; / t M i  

os) ¢ V ¢ + p o ( s  
+ ~90} 0{0" (8.14) 

In Geometry, the same symbol III is used to represent the 
simpler quantity s+NCM¢ N which is used to derive a 
Gaussian approximation to the angular diffraction widths 
of spots. The formula used the derivative Vs)¢ = - ( R / T ,  
where T is a signed bilinear quantity, (SO[OR), replac- 
ing the inverse of the conventional Lorentz factor, L-1. 
The products of derivatives simplify considerably when 
back-substituted and expanded. For the angular terms 
[cf (7.14)1: 

0¢ c':9S) _ (R[LR. ] + TIRN ] 
T 0s~ 0~) 

= (RN, (8.15) 

though this result should not be interpreted as implying 
that JR] + TIR N alone reduces to N. The direct-space shift 
terms [cf (7.9)1 vanish completely: 

0¢ os) _ 
- T  0S) 0v~} ( R - ~  = (0, (8.16) 

using (7.3). Thus, the old formula [Geometry, (11.1)] for 
the variance of ¢ is reproduced in its original simplicity 
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despite the apparent complication of incorporating the ef- 
fects of non-vanishing crystal and beam sizes: 

(RIIIR) 
var(4) - = %> m - 

_ (RT [S + _b_~M~ ~_~as> • • o(s 

aS) . . . .  a + ]  R) 
+ 0~} ~ V ~ + P  T 

= (R s+rsJ M LSl R> 
T2 

(8.17) 

This result is the physically expected one, but does de- 
pend on the assumption of lack of correlation between 
the various Gaussian distributions. An equivalent major 
simplification of the formula for the cross section of the 
scattered beam, in contrast, is not expected. This is be- 
cause all mosaic misorientations except those whose axis 
is aligned along the scattering vector must stretch diffrac- 
tion spots into an arc. This is borne out by the explicit 
equations which appear not to reduce significantly from 
the form created by direct substitution. 

The direct-space shift equation requires a derivative 
of the type ~ )  tg} which can be determined within an ir- 
relevant degree of freedom by inverting the second-rank 
~} S) [(7.9)]: 

- aT]_R 

: - a RITTIR RIT. (8.18) 

Details of the inversion of 'ImR are given in Appendix C, 
where it is also shown that 

RIT RIT -- TiT 

and hence by transposition 

(8.19) 

T LR "I].R = TiT. (8.20) 

Equations (8.19) and (8.20) allow a minor simplification 
of the direct-space equation of scattered-beam cross sec- 
tion developed below. Any reduction of the contribution 
from mosaicity to the same equation would rely on a fur- 
ther reduction of the form of (7.14)(Ve)S) = L R] + TIRLS]) 
and although there are several rearrangements, the author 
has not been able to find one with fewer than two com- 
ponents.* Thus, the direct-space spot-shape equation in 

* The product, RJ.T [[R] + q]R[S]] = R].T [[R] + SIR[SJ], but this equation 
is not valid in the absence of the prefactor RJ.T. Equation (8.21) does 
contain this prefactor within the symbol T.[R so this rearrangement could 
be used, but offers little advantage. 

Gaussian approximation appears to be irreducible beyond 

var(v~}) = Vs)tg} ILl V(s{~ 

- - ~  = aTIR IiI RI_Ta 

[ aTe>C), ,a<s = aT].R S + ~ M ~  0(¢ 

+ 0 S ) ~ t V # + p 0 ! S ]  R.J.To~ 
OO} O{OJ 

=  TI__R S 

+  TIR [[R] + TIR[Sl] [Ira + fSJmT] RI_T  

+ TJT ~V~t +P"I1T. (8.21) 

The rearrangements of this equation make use of (8.18), 
(8.14), (7.14), (7.19), (8.19) and (8.20) in that order. The 
variance of ~3} along the direction of the scattered beam, 
T), is not defined by (8.21); it is in any case undefined 
to the extent of being indefinitely large. The first term of 
the final expression represents the divergence of the scat- 
tered beam between the crystal and the detector; the sec- 
ond term represents the extra smearing of spots because 
of mosaicity; the third term represents the beam shape 
just as it leaves the crystal. Although this result seems to 
suggest that even in Gaussian approximation the shape 
of the outgoing beam is far from simple, a comparison 
of the arrowed expression in (8.21) with (8.17) does dis- 
play a possibly surprising remaining orthogonality and, 
indeed, an economy of representation. The angular term 
(8.17) is obtained by probing Iii with the single vector 
R) (a rank 1 probe), whereas the beam shape (8.21) is 
obtained by probing IiI with directions strictly orthogo- 
nal to R) (a rank 2 probe). This must actually be a forced 
result of using (8.13). If only the angular equation is con- 
sidered, the deponent form of IiI (= S+[SJ~M~[S]) suf- 
fices, and not only always has the same form, but for a 
single position of the crystal even has the same value for 
all diffraction spots. This means that it used to be consid- 
ered as an 'honorary' second-rank tensor, despite being 
an obviously contrived quantity (Thomas, 1992). A con- 
sideration of the beam shape, however, demolishes this 
interpretation because it does not seem to be possible to 
disentangle the variation of the full form of Ill from the 
reciprocal-lattice vector, R). 

The equations developed above show unambiguously 
that the beam divergence and the mosaicity affect the 
shapes of diffraction spots in different ways. On an area 
diffractometer, the effects are distinguishable because the 
full three-dimensional profile is perceivable. Observation 
of a single spot, or even several neighbouring ones, to ar- 
bitrarily high accuracy cannot determine the controlling 
distributions. When, however, a major part of the entire 
diffraction pattern is available, it becomes feasible to de- 
termine these various contributions. This opens the pos- 
sibility of a full analytically justifiable three-dimensional 
profile analysis for area diffractometers which will be de- 
veloped in a subsequent paper. 
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Concluding remarks 

This is the most detailed analysis of the geometrical gen- 
eration of diffraction-spot profiles yet developed for use 
with an area-detector diffractometer or camera, and it is 
hoped that it will be of value in the development of for- 
mally justifiable profile-analysis algorithms. The direct 
relationship between the detailed properties of the beam 
and of the crystal have been shown explicitly, though it 
has not yet been possible to explore fully the complica- 
tions introduced by phonon coupling or by absorption. 
The present analysis should, however, provide a suffi- 
ciently good basis on which to verify some of the as- 
sumptions made by currently available profile-analysis 
algorithms which rely on the local similarity of the ge- 
ometry. 

The quartic diffraction tulip and the equivalent cam in 
direct space are not thought to have been reported previ- 
ously. 

The author is grateful to Dr P. A. Tucker and espe- 
cially to Dr Robert Diamond for helpful comments on the 
manuscript. Much of the preliminary work leading to this 
paper was supported by the Medical Research Council of 
Great Britain as part of the development of the Enraf- 
Nonius FAST system, and was completed at the European 
Molecular Biology Laboratory supported by an EMBO 
long-term fellowship. 

APPENDIX A 
The simultaneous diagonalization of two matrices 

The author is indebted to Dr Richard Bryan for pointing 
out that the identity relation used in § 8 can be proved 
without using the convolution theorem by exploiting the 
fact that two real symmetric positive-definite matrices can 
be diagonalized simultaneously. This is perhaps easier to 
understand in geometrical terms, when such matrices are 
representable by ellipsoidal contours. The metric can be 
altered so that one ellipsoid becomes isometric, in other 
words circular, spherical or hyperspherical depending on 
the number of dimensions. The other matrix can then be 
represented in diagonalized form in the normal way by ex- 
ploiting rotations which, because of the change of metric, 
do not upset the diagonalization of the first matrix. It is 
obviously not generally possible to achieve simultaneous 
diagonalization of more than two matrices. 

The straightforward diagonalization of a matrix, say B, 
can be expressed as 

B = ~ N ~  ¢--> n ~ = ~ S  ~ S B ~ = N  (A1) 

where ~ and its inverse ~ are rotation matrices, so that 

~S = 1 = ~ (A2) 

and N is the diagonal matrix of eigenvalues v written in 
quite sufficient detail as N = diag(v). Using M to control 

the metric, it must be possible to write 

MTA M = MTB M diag(A) -- MTB M A (A3) 

where A are the eigenvalues of the diagonal A. To achieve 
simultaneous diagonalization of A and B, this equation is 
forced to look the same as (A1) by setting MTB M = 1, 
which implies directly that 

n = ~ T ~ ,  (A4) 

constraining M within an arbitrary unitary factor. This 
is the first result necessary to prove the initial assertion 
about simultaneous diagonalization. M is not singular, so 
the M T in (A3) can be removed by premultiplying with 

~ T .  Then B can be substituted from (A 1), giving 

AM -- ~N~ MA (A5) 
and hence ~ A ~ M  = N~MA using (A2). This can be 
rephrased in a way that generates the unknown unitary 
factor: 

1 1 

N ~ ~A~N ~ N~M1 _- N~M1 A, (A6) 

~? ~, 

which is of the same form as (A 1) provided that ¢1~ -- 
1 = ~ (in other words, that ~r is indeed unitary) and 
A = diag(A), which has been specified already in (A3). 
N½ is never unique, but this is of no importance since any 
correct form is equally valid. Rearranging the (repeated) 
braced term in (A6) gives the expression for M: 

M = ~N~Y, (A7) 

which, being substituted into A = ~N~ MAM from (A5), 
by expansion and cancellation reduces to 

A = MTAM, (A8) 

which is the second result necessary to prove the assertion 
about simultaneous diagonalization. 

The identity sought can now be proved by substituting 
the values for A, B, and exploiting the diagonalization to 
rearrange to a symmetric form: 

B-B(A + B)B 
_- ~ y ~ _  ~ T ~  [~TA~ + ~ T ~ ] -  I~T~  

= ~ T ~ _  ~ T  [A + 1]-  1 ~  

= ~ T  [1 -- diag(1/[1 + A])]~ 

= i l l -  diag(1/[1 + M)]-1MT 

= M[diag(,\/[1 + ,q)]-~MT 

= M[diag([1 + A]/A)]M T 

= i [diag(1/A) + 1 ] i  T 

= M A n  T + MM T 

= A + B. (A9) 
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APPENDIX B 
The normal to the surface of the tulip 

The Jacobian of S) with respect to R) will generate only 
vectors within the tangent plane of the tulip at S) if the 
changes in R) are perpendicular to R) itself. This is easily 
arranged by introducing any non-zero power of [RJ or of 
RJR; RJ_R is used here: 

VR) S')RJ_R = [1 - TIR½RIS]RJ.R 

= RJ_R- TIR ~ [RIR- RIT ] 

= RJ_R- TIR~RJ.T. (/31) 

This latter operator must have the normal to the surface 
of the tulip as a left null eigencovector. Because of the 
cylindrical symmetry of the tulip, this covector must be 
expressible as a linear combination of two of (R, (S or 
(T, no vector out of their plane being required. Setting 
the covector to be 

(U = cr(S + fl(R (B2) 

gives 

[a(S +/3(R] [R.[R- TIR~RJ.T] = (0 (B3) 

as the eigenequation required. Expanding this and gath- 
ering terms in (S and in (R, which must null separately, 
shows that 

(RS) 
= (/34) 

to T), say TJTR), is a unit eigenvector: 

RJTTJ_R TJTR) = TJTR). (C4) 

The third eigenvector must be perpendicular to the first 
two and can be chosen consistently as TJ_TR). The form 
RJ_TTJ_R TJTR) does not reduce by an obvious route to the 
required form TJTR)A, where A is the eigenvalue. The 
eigenvalue can, however, be found because if My = vA, 
where M is a matrix and v an eigenvector, then A = 
vTMv/vTv. Using this rule and reducing the formula by 
direct substitution and expansion gives 

A = (RTJ-TRJ-TTIR TITR) 
(RTJ_T TJ_TR) 

(RR)(TT) 
(RT)(TR) " (C5) 

The inverse of RJ_TT~R can now be created explicitly as 
a sum of rank 1 matrices with inverted eigenvalues. For 
a generalized inverse, a null eigenvalue does not invert 
divergently but remains null. Thus, the inverse is a sum 
of only two terms picking out the subspace normal to the 
null eigenvector T): 

TJTR)(RT[T TJ_TR)A(RTJT 
RJ_TT~R = (RT[TTJTR) + (RT~TTITR) 

TJTR)(RT[T TJ_TR)A(RTJT = + 

(RTJ_TR) (RT~TR) ' 
(C6) 

Setting/3 ~- 1 and hence o~ ~-- (RS)/(SS) gives (6.2) 
directly. 

APPENDIX C 
The inversion of'fiR 

Equation (7.9) contains the matrix operator TJR whose 
inverse is required in (8.21). The classical inverse does 
not exist, but the generalized inverse (Moore, 1920, 1935; 
Pem'ose, 1955) can be formed as 

TJ_R = RJ_TTJR PiT (C 1) 

or, equally, as 

TIR = RJT TJ_RRIT (C2) 

where 

~ =  (RT) (TR) 
(C7) 

<RR)(TT) " 

The product of the original matrix RJ_TTJ_R with its inverse 
is 

RJ_TTJ R RJ.TTJ.R = TiT , ( C 8) 

which differs from the identity, 1, by having T) as a null 
eigenvector. Simply regrouping the factors in (C8) gives 

R IT RJ_T = TiT , (C9) 

which is used in the direct-space part of (8.21). 

(c f  Appendix B in Geometry).  The forms RJ_TTIR and 
TIRR~T are real symmetric positive matrices. Only one, 
say R.[TTJ_R, need be considered in detail because the re- 
suits for the other can be found simply by swapping R 
and T. It is clear from (7.2) that T) is a null eigenvector 
of RJ_TTIR: 

RJ.TTJR T) = 0), (C3) 

whilst from (7.1) any vector perpendicular both to R) and 
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Abstract 

The precision of the numer ica l  algori thms used to 
integrate the Takag i -Taup in  equations has been in 
the past a severe l imitat ion for the s imulat ion of  
accurate topographs.  The intensity, especially in the 
direct image of  the defect, is underest imated.  This 
has forb idden the use of  the reciprocity theorem for 
the s imula t ion  of  traverse and white-beam syn- 
chrotron topographs.  A new algori thm is described,  
based on two different methods of expressing the 
partial-derivative equations,  which permits a faster 
and more accurate calculation. 

I. Introduction 

X-ray topography is a widespread method for single- 
crystal characterization.  Computer  s imulat ion of  
topographs  is useful for image interpretat ion because 
it allows quanti tat ive analysis  of  the perfection of  
crystals. The compar ison  between the computed and 
the exper imenta l  images makes it possible to test the 
validi ty of  a deformat ion  model  for the defects seen 
in the image and to determine quanti tat ively param- 
eters that are not accessible through the exper iment  
such as the sign and magni tude  of  the Burgers vector 
of  a dis locat ion or the nature of  a stacking fault. 
Simulat ion of  section topographs is now well estab- 
l ished (Epelboin,  1985). As for traverse topographs,  

0108 -7673 / 93/030460-08506.00 

Petrashen, Chukovski i  & Shulpina  (1980) have 
at tempted to calculate the intensity along a line of  
the image and Epelboin & Soyer (1985) have simu- 
lated whole images. The latter have shown that the 
precision of  the algori thms was not sufficient for the 
reciprocity theorem of  optics to be used as suggested 
by Petrashen (1976). 

Three aspects must be considered when comput ing 
X-ray topographs:  

(i) the kind of  wave incident  on the surface of  
the crystal; 

(ii) the numerical  method to solve the propagat ion 
equations inside the crystal; 

(iii) the network of  integration used to integrate 
these equations.  

Let us briefly review each of  them. X-ray topogra- 
phy may be classified into two groups: plane-wave 
and spherical-wave topography.  Laboratory and syn- 
chrotron-radiat ion sources produce spherical  waves 
(Aristov, Kohn,  Polovinkina & Snigirev, 1982; 
Carvalho & Epelboin,  1990), so that to obtain a p lane 
wave it is necessary to put a specially designed mono- 
chromator  in front of  the specimen.  Petrashen et al. 
(1980) expla ined  why the most efficient method to 
simulate plane-wave topographs is the Tournarie  
method (Authier,  Malgrange & Tournarie,  1968). 
Thus, in this paper  we will study only the case of the 
spherical  wave, i.e. section and traverse topographs.  
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